Hosoya Polynomial and Wiener Index of Zero-Divisor Graph of Z_n
نویسندگان
چکیده
منابع مشابه
Wiener Index and Hosoya Polynomial of Fibonacci and Lucas Cubes
In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in turn yields a closed formula f...
متن کاملTHE ZERO-DIVISOR GRAPH OF A MODULE
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...
متن کاملenergy and wiener index of zero-divisor graphs
let r be a commutative ring and (r) be its zerodivisor graph. in this article, we studywiener index and energy of γ(zn ) where n = pq or n = p2q and p, q are primes. a matlabcode for our calculations is also presented.
متن کاملRelationship between the Hosoya polynomial and the hyper-Wiener index
The Hosoya polynomial of a graph, H(G, z), has the property that its first derivative, evaluated at z = 1, equals the Wiener index, i.e., W(G) = H’(G, 1). In this paper, an equation is presented that gives the hyper-Wiener index, WW(G), in terms of the first and second derivatives of H(G,z). Also defined here is a hyper-Hosoya polynomial, HH(G,r), which has the property WW(G) = HH’(G, l), analo...
متن کاملMedian and Center of Zero-Divisor Graph of Commutative Semigroups
For a commutative semigroup S with 0, the zero-divisor graph of S denoted by &Gamma(S) is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper we study median and center of this graph. Also we show that if Ass(S) has more than two elements, then the girth of &Gamma(S) is three.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics
سال: 2018
ISSN: 2311-7990
DOI: 10.33899/csmj.2018.163570